ME 423 SUMMER 2020 Introduction to Numerical Methods in Fluid Dynamics On-line course delivery

Instructor: Dr. Robert F. Kunz, Professor of Mechanical Engineering, 814-865-2144, <u>rfk102@psu.edu</u>, online office hours:TBD

This course provides an introduction to the important and growing field of Computational Fluid Dynamics (CFD). The student will become familiar with the basic differential models, discretization practices and solution strategies of CFD. Fundamentals of algorithm classification, error and stability analysis will be covered. Also, several advanced topics of relevance to modern CFD analysis will be covered.

Required Text: None

Module Sequence					
Module 1: Overview, History and Status of CFD					
Module 2: Governing Equations of Fluid Dynamics					
Module 3: Partial Differential Equation Classification					
Module 4: Important PDEs in Fluid Dynamics					
Module 5: Discretization					
Module 6: Explicit Schemes, Implicit Schemes and Linearization					
Module 7: Matrix Solution Schemes					
Module 8: Introduction to Stability and Error Analysis					
Module 9: Extending Error and Stability Analysis - I					
Module 10: Extending Error and Stability Analysis - II					
Module 11: Solution and Analysis of Hyperbolic Systems					
Module 12: Solution and Analysis of Parabolic Systems					
Module 13: Solution and Analysis of Elliptic Systems					
Module 14: Stability and Convergence of Iterative Schemes, Matrix Stability Analysis					
Module 15: Boundary Conditions					
Module 16: Mesh Generation					
Module 17: Pre- and Post-Processing and Visualization					
Module 18: Finite Volume and Element Methods					
Module 19: Turbulence Modeling					
Module 20: Advanced Topics – to potentially include a) Unstructured and Overset Methods, b)					
Pressure Correction Methods, c) Multigrid and Other Acceleration Techniques, d) Machine Learning in					
CFD, e) Computer Architecture and Parallelization					

Student requirements and grading:

- Three take-home examinations each covering 1/3 course 50%
- One computer programming / term project 20%
- · 8 homework assignments 30%

_	S	F	Th	W	Т	М	S
MAY	23 HW 1 assigned Term Project Assigned	22	21	20		18 FIRST DAY OF SUMMER CLASSES	17 Week 1 lectures posted
	30 HW 2 assigned	29	28	27	26	25	24 Week 2 lectures posted
I	HW 3 assigned	5 HW 1 due	4	3	2	1	31 Week 3 lectures posted
JUNE	13 Midterm 1 assigned	12 HW 2 due	11	10	9	8	7 Week 4 lectures posted
	20 HW 4 assigned	19 Midterm1 due	18	17	16	15	14 Week 5 lectures posted
	HW 5 assigned	26 HW 3 due	25	24	23	22	21 Week 6 lectures posted
JULY	4 HW 6 assigned	3 HW 4 due	2	1	30 Term Project Part 1 due	29	28 Week 7 lectures posted
	Midterm 2 assigned	10 HW 5 due	9	8	7	6	5 Week 8 lectures posted
	18 HW 7 assigned	17 Midterm 2 due	16	15	14	13	12 Week 9 lectures posted
	HW 8 assigned	24 HW 6 due	23	22	21	20	19 Week 10 lectures posted
AUGUS	1 Midterm 3 assigned	31 HW 7 due	30	29	28	27	26 Week 11 lectures posted
	8	7 HW 8 due	6	5	4	3	2 Week 12 lectures posted
		14 Midterm 3 Due Term Project Part 2 due		12 LAST DAY OF SUMMER CLASSES	11	10	9 Week 13 lectures posted